language-icon Old Web
English
Sign In

Alpha Magnetic Spectrometer

The Alpha Magnetic Spectrometer, also designated AMS-02, is a particle physics experiment module that is mounted on the International Space Station (ISS). The module is a detector that measures antimatter in cosmic rays, this information is needed to understand the formation of the Universe and search for evidence of dark matter. The Alpha Magnetic Spectrometer, also designated AMS-02, is a particle physics experiment module that is mounted on the International Space Station (ISS). The module is a detector that measures antimatter in cosmic rays, this information is needed to understand the formation of the Universe and search for evidence of dark matter. The principal investigator is Nobel laureate particle physicist Samuel Ting. The launch of Space Shuttle Endeavour flight STS-134 carrying AMS-02 took place on 16 May 2011, and the spectrometer was installed on 19 May 2011. By April 15, 2015, AMS-02 had recorded over 60 billion cosmic ray events and 90 billion after five years of operation since its installation in May 2011. In March 2013, Professor Ting reported initial results, saying that AMS had observed over 400,000 positrons, with the positron to electron fraction increasing from 10 GeV to 250 GeV. (Later results have shown a decrease in positron fraction at energies over about 275 GeV). There was 'no significant variation over time, or any preferred incoming direction. These results are consistent with the positrons originating from the annihilation of dark matter particles in space, but not yet sufficiently conclusive to rule out other explanations.' The results have been published in Physical Review Letters. Additional data are still being collected. The alpha magnetic spectrometer was proposed in 1995 by the Antimatter Study Group, led by MIT particle physicist Samuel Ting, not long after the cancellation of the Superconducting Super Collider. The original name for the instrument was Antimatter Spectrometer, with the stated objective to search for primordial antimatter, with a target resolution of antimatter/matter ≈10−9.The proposal was accepted and Ting became the principal investigator. An AMS prototype designated AMS-01, a simplified version of the detector, was built by the international consortium under Ting's direction and flown into space aboard the Space Shuttle Discovery on STS-91 in June 1998. By not detecting any antihelium the AMS-01 established an upper limit of 1.1×10−6 for the antihelium to helium flux ratio and proved that the detector concept worked in space. This shuttle mission was the last shuttle flight to the Mir Space Station. After the flight of the prototype, the group, now labelled the AMS Collaboration, began the development of a full research system designated AMS-02. This development effort involved the work of 500 scientists from 56 institutions and 16 countries organized under United States Department of Energy (DOE) sponsorship. The instrument which eventually resulted from a long evolutionary process has been called 'the most sophisticated particle detector ever sent into space', rivaling very large detectors used at major particle accelerators, and has cost four times as much as any of its ground-based counterparts. Its goals have also evolved and been refined over time. As built it is a more comprehensive detector which has a better chance of discovering evidence of dark matter along other goals. The power requirements for AMS-02 were thought to be too great for a practical independent spacecraft. So AMS-02 was designed to be installed as an external module on the International Space Station and use power from the ISS. The post-Space Shuttle Columbia plan was to deliver AMS-02 to the ISS by space shuttle in 2005 on station assembly mission UF4.1, but technical difficulties and shuttle scheduling issues added more delays. AMS-02 successfully completed final integration and operational testing at CERN in Geneva, Switzerland which included exposure to energetic proton beams generated by the CERN SPS particle accelerator. AMS-02 was then shipped by specialist haulier to ESA's European Space Research and Technology Centre (ESTEC) facility in the Netherlands where it arrived 16 February 2010. Here it underwent thermal vacuum, electromagnetic compatibility and electromagnetic interference testing. AMS-02 was scheduled for delivery to the Kennedy Space Center in Florida, United States. in late May 2010. This was however postponed to August 26, as AMS-02 underwent final alignment beam testing at CERN.

[ "Detector", "Cosmic ray", "Dark matter", "Positron", "International Space Station" ]
Parent Topic
Child Topic
    No Parent Topic