language-icon Old Web
English
Sign In

Reinforcement learning

Reinforcement learning (RL) is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning (RL) is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. It differs from supervised learning in that labelled input/output pairs need not be presented, and sub-optimal actions need not be explicitly corrected. Instead the focus is finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge). The environment is typically formulated as a Markov decision process (MDP), as many reinforcement learning algorithms for this context utilize dynamic programming techniques. The main difference between the classical dynamic programming methods and reinforcement learning algorithms is that the latter do not assume knowledge of an exact mathematical model of the MDP and they target large MDPs where exact methods become infeasible..mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none} Reinforcement learning, due to its generality, is studied in many other disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, multi-agent systems, swarm intelligence, statistics and genetic algorithms. In the operations research and control literature, reinforcement learning is called approximate dynamic programming, or neuro-dynamic programming. The problems of interest in reinforcement learning have also been studied in the theory of optimal control, which is concerned mostly with the existence and characterization of optimal solutions, and algorithms for their exact computation, and less with learning or approximation, particularly in the absence of a mathematical model of the environment. In economics and game theory, reinforcement learning may be used to explain how equilibrium may arise under bounded rationality. Basic reinforcement is modeled as a Markov decision process: Rules are often stochastic. The observation typically involves the scalar, immediate reward associated with the last transition. In many works, the agent is assumed to observe the current environmental state (full observability). If not, the agent has partial observability. Sometimes the set of actions available to the agent is restricted (a zero balance cannot be reduced. For example, if the current value of the agent is 3 and the state transition reduces the value by 4, the transition will not be allowed). A reinforcement learning agent interacts with its environment in discrete time steps. At each time t, the agent receives an observation o t {displaystyle o_{t}} , which typically includes the reward r t {displaystyle r_{t}} . It then chooses an action a t {displaystyle a_{t}} from the set of available actions, which is subsequently sent to the environment. The environment moves to a new state s t + 1 {displaystyle s_{t+1}} and the reward r t + 1 {displaystyle r_{t+1}} associated with the transition ( s t , a t , s t + 1 ) {displaystyle (s_{t},a_{t},s_{t+1})} is determined. The goal of a reinforcement learning agent is to collect as much reward as possible. The agent can (possibly randomly) choose any action as a function of the history. When the agent's performance is compared to that of an agent that acts optimally, the difference in performance gives rise to the notion of regret. In order to act near optimally, the agent must reason about the long term consequences of its actions (i.e., maximize future income), although the immediate reward associated with this might be negative. Thus, reinforcement learning is particularly well-suited to problems that include a long-term versus short-term reward trade-off. It has been applied successfully to various problems, including robot control, elevator scheduling, telecommunications, backgammon, checkers and go (AlphaGo).

[ "Algorithm", "Machine learning", "Artificial intelligence", "pole balancing", "inverse reinforcement learning", "Reward-based selection", "credit assignment", "Proto-value functions" ]
Parent Topic
Child Topic
    No Parent Topic