language-icon Old Web
English
Sign In

Supersymmetry

In particle physics, supersymmetry (SUSY) is a principle that proposes a relationship between two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin. A type of spacetime symmetry, supersymmetry is a possible candidate for undiscovered particle physics, and seen as an elegant solution to many current problems in particle physics if confirmed correct, which could resolve various areas where current theories are believed to be incomplete. A supersymmetrical extension to the Standard Model would resolve major hierarchy problems within gauge theory, by guaranteeing that quadratic divergences of all orders will cancel out in perturbation theory. In particle physics, supersymmetry (SUSY) is a principle that proposes a relationship between two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin. A type of spacetime symmetry, supersymmetry is a possible candidate for undiscovered particle physics, and seen as an elegant solution to many current problems in particle physics if confirmed correct, which could resolve various areas where current theories are believed to be incomplete. A supersymmetrical extension to the Standard Model would resolve major hierarchy problems within gauge theory, by guaranteeing that quadratic divergences of all orders will cancel out in perturbation theory. In supersymmetry, each particle from one group would have an associated particle in the other, which is known as its superpartner, the spin of which differs by a half-integer. These superpartners would be new and undiscovered particles. For example, there would be a particle called a 'selectron' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly 'unbroken' supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. Since we expect to find these 'superpartners' using present-day equipment, if supersymmetry exists then it consists of a spontaneously broken symmetry allowing superpartners to differ in mass. Spontaneously broken supersymmetry could solve many mysterious problems in particle physics including the hierarchy problem. There is no evidence at this time to show whether or not supersymmetry is correct, or what other extensions to current models might be more accurate. In part this is because it is only since around 2010 that particle accelerators specifically designed to study physics beyond the Standard Model have become operational, and because it is not yet known where exactly to look nor the energies required for a successful search. The main reasons for supersymmetry being supported by physicists is that the current theories are known to be incomplete and their limitations are well established, and supersymmetry would be an attractive solution to some of the major concerns. Direct confirmation would entail production of superpartners in collider experiments, such as the Large Hadron Collider (LHC). The first runs of the LHC found no previously-unknown particles other than the Higgs boson which was already suspected to exist as part of the Standard Model, and therefore no evidence for supersymmetry. Indirect methods include the search for a permanent electric dipole moment (EDM) in the known Standard Model particles, which can arise when the Standard Model particle interacts with the supersymmetric particles. The current best constraint on the electron electric dipole moment put it to be smaller than 10−28 e·cm, equivalent to a sensitivity to new physics at the TeV scale and matching that of the current best particle colliders. A permanent EDM in any fundamental particle points towards time-reversal violating physics, and therefore also CP-symmetry violation via the CPT theorem. Such EDM experiments are also much more scalable than conventional particle accelerators and offer a practical alternative to detecting physics beyond the standard model as accelerator experiments become increasingly costly and complicated to maintain. These findings disappointed many physicists, who believed that supersymmetry (and other theories relying upon it) were by far the most promising theories for 'new' physics, and had hoped for signs of unexpected results from these runs. Former enthusiastic supporter Mikhail Shifman went as far as urging the theoretical community to search for new ideas and accept that supersymmetry was a failed theory. However it has also been argued that this 'naturalness' crisis was premature, because various calculations were too optimistic about the limits of masses which would allow a supersymmetry based solution. Furthermore, it is now argued that the string theory landscape should have a power law statistical pull on softSUSY breaking terms to large values (depending on the number of hidden sector SUSY breaking fields contributing to the soft terms). If this is coupled with an anthropic requirement that contributions to the weak scale not exceed a factor 2-5 from its measured value (as argued by Agrawal et al.), then the Higgs mass is pulled up to the vicinity of 125 GeV while most sparticles are pulled to values beyond the current reach of LHC. An exception occurs for higgsinos which gain mass not from SUSY breaking but rather from whatever mechanism solves the SUSY mu problem. Light higgsino pair production in association with hard initial state jet radiation leads to a soft opposite-sign dilepton plus jet plus missing transverse energy signal. Such an excess seems to be appearing in current Atlas data with 139 fb-1 of integrated luminosity.

[ "Quantum electrodynamics", "Quantum mechanics", "Particle physics", "Mathematical physics", "Supercharge", "Haag–Lopuszanski–Sohnius theorem", "Superfield", "Flipped SU(5)", "Superpartner" ]
Parent Topic
Child Topic
    No Parent Topic