language-icon Old Web
English
Sign In

Permafrost

In geology, permafrost is ground, including rock or (cryotic) soil, with a temperature that remains at or below the freezing point of water 0 °C (32 °F) for two or more years. Most permafrost is located in high latitudes (in and around the Arctic and Antarctic regions), but at lower latitudes alpine permafrost occurs at higher elevations. Ground ice is not always present, as may be in the case of non-porous bedrock, but it frequently occurs and it may be in amounts exceeding the potential hydraulic saturation of the ground material. Permafrost accounts for 0.022% of total water on Earth and the permafrost region covers 24% of exposed land in the Northern Hemisphere. It also occurs subsea on the continental shelves of the continents surrounding the Arctic Ocean, portions of which were exposed during the last glacial period. A group of palsas, as seen from above, formed by the growth of ice lenses.Pingos near Tuktoyaktuk, Northwest Territories, CanadaGround polygonsStone rings on SpitsbergenIce wedges seen from topSolifluction on SvalbardContraction crack (ice wedge) polygons on Arctic sediment.Cracks forming at the edges of the Storflaket permafrost bog in Sweden.Thawing permafrost in Herschel Island, Canada, 2013Thawing permafrost in Herschel Island, Canada, 2013Thawing permafrost in Herschel Island, Canada, 2013Permafrost and ice in Herschel Island, Canada, 2012Permafrost thaw ponds on peatland in Hudson Bay, Canada in 2008.Modern buildings in permafrost zones may be built on piles to avoid permafrost-thaw foundation failure from the heat of the building.Heat pipes in vertical supports maintain a frozen bulb around portions of the Trans-Alaska Pipeline that are at risk of thawing.Pile foundations in Yakutsk, a city underlain with continuous permafrost.District heating pipes run above ground in Yakutsk to avoid thawing permafrost. In geology, permafrost is ground, including rock or (cryotic) soil, with a temperature that remains at or below the freezing point of water 0 °C (32 °F) for two or more years. Most permafrost is located in high latitudes (in and around the Arctic and Antarctic regions), but at lower latitudes alpine permafrost occurs at higher elevations. Ground ice is not always present, as may be in the case of non-porous bedrock, but it frequently occurs and it may be in amounts exceeding the potential hydraulic saturation of the ground material. Permafrost accounts for 0.022% of total water on Earth and the permafrost region covers 24% of exposed land in the Northern Hemisphere. It also occurs subsea on the continental shelves of the continents surrounding the Arctic Ocean, portions of which were exposed during the last glacial period. The thawing of permafrost has implications for the global climate. A global temperature rise of 1.5 °C (2.7 °F) above current levels would be enough to start the thawing of permafrost in Siberia, according to one group of scientists. 'In contrast to the relative dearth of reports on frozen ground in north America prior to World War II, a vast literature on the engineering aspects of permafrost was available in Russian. Beginning in 1942, Siemon William Muller delved into the relevant Russian literature held by the Library of Congress and the U.S. Geological Survey Library so that he was able to furnish the government an engineering field guide and a technical report about permafrost by 1943', year in which he coined the term as a contraction of permamently frozen ground. Although originally classified (as U.S. Army. Office of the Chief of Engineers, Strategic Engineering Study, no. 62, 1943), in 1947 a revised report was released publicly, which is regarded as the first North American treatise on the subject. Permafrost is soil, rock or sediment that is frozen for more than two consecutive years. In areas not overlain by ice, it exists beneath a layer of soil, rock or sediment, which freezes and thaws annually and is called the 'active layer'. In practice, this means that permafrost occurs at an mean annual temperature of −2 °C (28.4 °F) or colder. Active layer thickness varies with the season, but is 0.3 to 4 meters thick (shallow along the Arctic coast; deep in southern Siberia and the Qinghai-Tibetan Plateau). The extent of permafrost varies with the climate: in the Northern Hemisphere today, 24% of the ice-free land area, equivalent to 19 million square kilometers, is more or less influenced by permafrost. Of this area slightly more than half is underlain by continuous permafrost, around 20 percent by discontinuous permafrost, and a little less than 30 percent by sporadic permafrost. Most of this area is found in Siberia, northern Canada, Alaska and Greenland. Beneath the active layer annual temperature swings of permafrost become smaller with depth. The deepest depth of permafrost occurs where geothermal heat maintains a temperature above freezing. Above that bottom limit there may be permafrost, whose temperature doesn't change annually—'isothermal permafrost'. Permafrost typically forms in any climate where the mean annual air temperature is less than the freezing point of water. Exceptions are found in moist-wintered forest climates, such as in Northern Scandinavia and the North-Eastern part of European Russia west of the Urals, where snow acts as an insulating blanket. Glaciated areas may be exceptions. Since all glaciers are warmed at their base by geothermal heat, temperate glaciers, which are near the pressure-melting point throughout, may have liquid water at the interface with the ground and are therefore free of underlying permafrost. 'Fossil' cold anomalies in the Geothermal gradient in areas where deep permafrost developed during the Pleistocene persist down to several hundred metres. This is evident from temperature measurements in boreholes in North America and Europe. Typically, the below-ground temperature varies less from season to season than the air temperature, with mean annual temperatures tending to increase with depth as a result of the geothermal crustal gradient. Thus, if the mean annual air temperature is only slightly below 0 °C (32 °F), permafrost will form only in spots that are sheltered—usually with a northerly aspect—creating discontinuous permafrost. Usually, permafrost will remain discontinuous in a climate where the mean annual soil surface temperature is between −5 and 0 °C (23 and 32 °F). In the moist-wintered areas mentioned before, there may not be even discontinuous permafrost down to −2 °C (28 °F). Discontinuous permafrost is often further divided into extensive discontinuous permafrost, where permafrost covers between 50 and 90 percent of the landscape and is usually found in areas with mean annual temperatures between −2 and −4 °C (28 and 25 °F), and sporadic permafrost, where permafrost cover is less than 50 percent of the landscape and typically occurs at mean annual temperatures between 0 and −2 °C (32 and 28 °F).In soil science, the sporadic permafrost zone is abbreviated SPZ and the extensive discontinuous permafrost zone DPZ. Exceptions occur in un-glaciated Siberia and Alaska where the present depth of permafrost is a relic of climatic conditions during glacial ages where winters were up to 11 °C (20 °F) colder than those of today. At mean annual soil surface temperatures below −5 °C (23 °F) the influence of aspect can never be sufficient to thaw permafrost and a zone of continuous permafrost (abbreviated to CPZ) forms. A line of continuous permafrost in the Northern Hemisphere represents the most southerly border where land is covered by continuous permafrost or glacial ice. The line of continuous permafrost varies around the world northward or southward due to regional climatic changes. In the southern hemisphere, most of the equivalent line would fall within the Southern Ocean if there were land there. Most of the Antarctic continent is overlain by glaciers, under which much of the terrain is subject to basal melting. The exposed land of Antarctica is substantially underlain with permafrost, some of which is subject to warming and thawing along the coastline. Estimates of the total area of alpine permafrost vary. Bockheim and Munroe combined three sources and made the tabulated estimates by region, totaling 3,560,000 km2 (1,370,000 sq mi). Alpine permafrost in the Andes has not been mapped. Its extent has been modeled to assess the amount of water bound up in these areas. In 2009, a researcher from Alaska found permafrost at the 4,700 m (15,400 ft) level on Africa's highest peak, Mount Kilimanjaro, approximately 3° north of the equator.

[ "Ecology", "Hydrology", "Oceanography", "Geomorphology", "Permafrost Region", "Climate change feedback", "Permafrost Zone", "Pingo", "Cryosuction" ]
Parent Topic
Child Topic
    No Parent Topic