language-icon Old Web
English
Sign In

Ultramafic rock

Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are composed of usually greater than 90% mafic minerals (dark colored, high magnesium and iron content). The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.Volcanic rocks:Subvolcanic rocks:Plutonic rocks:Picrite basaltPeridotiteBasaltDiabase (Dolerite)GabbroAndesiteMicrodioriteDioriteDaciteMicrogranodioriteGranodioriteRhyoliteMicrograniteGranite Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are composed of usually greater than 90% mafic minerals (dark colored, high magnesium and iron content). The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks. Intrusive ultramafic rocks are often found in large, layered ultramafic intrusions where differentiated rock types often occur in layers. Such cumulate rock types do not represent the chemistry of the magma from which they crystallized. The ultramafic intrusives include the dunites, peridotites and pyroxenites. Other rare varieties include troctolite which has a greater percentage of calcic plagioclase. These grade into the anorthosites. Gabbro and norite often occur in the upper portions of the layered ultramafic sequences. Hornblendite and, rarely phlogopite, are also found. Volcanic ultramafic rocks are rare outside of the Archaean and are essentially restricted to the Neoproterozoic or earlier, although some boninite lavas currently erupted within back-arc basins (Manus Trough, New Guinea) verge on being ultramafic. Subvolcanic ultramafic rocks and dykes persist longer, but are also rare. There is evidence of ultramafic rocks elsewhere in the solar system. Examples include komatiite and picritic basalt. Komatiites can be host to ore deposits of nickel. Ultramafic tuff is extremely rare. It has a characteristic abundance of olivine or serpentine and a scarcity or absence of feldspar and quartz. Rare occurrences may include unusual surface deposits of maars of kimberlites in the diamond fields of southern Africa and other regions. Technically ultrapotassic rocks and melilitic rocks are considered a separate group, based on melting model criteria, but there are ultrapotassic and highly silica-under-saturated rocks with >18% MgO which can be considered 'ultramafic'. Ultrapotassic, ultramafic igneous rocks such as lamprophyre, lamproite and kimberlite are known to have reached the surface of the Earth. Although no modern eruptions have been observed, analogues are preserved. Most of these rocks occur as dikes, diatremes, lopoliths or laccoliths, and very rarely, intrusions. Most kimberlite and lamproite occurrences occur as volcanic and subvolcanic diatremes and maars; lavas are virtually unknown. Vents of Proterozoic lamproite (Argyle diamond mine), and Cenozoic lamproite (Gaussberg, Antarctica) are known, as are vents of Devonian lamprophyre (Scotland). Kimberlite pipes in Canada, Russia and South Africa have incompletely preserved tephra and agglomerate facies.

[ "Mantle (geology)", "Geochemistry", "Paleontology", "Orthopyroxenite", "Cumulate rock", "Nuvvuagittuq Greenstone Belt", "Pancheria", "Araucaria laubenfelsii" ]
Parent Topic
Child Topic
    No Parent Topic