language-icon Old Web
English
Sign In

LIGO

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These can detect a change in the 4 km mirror spacing of less than a ten-thousandth the charge diameter of a proton. The initial LIGO observatories were funded by the National Science Foundation (NSF) and were conceived, built and are operated by Caltech and MIT. They collected data from 2002 to 2010 but no gravitational waves were detected. The Advanced LIGO Project to enhance the original LIGO detectors began in 2008 and continues to be supported by the NSF, with important contributions from the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council. The improved detectors began operation in 2015. The detection of gravitational waves was reported in 2016 by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration with the international participation of scientists from several universities and research institutions. Scientists involved in the project and the analysis of the data for gravitational-wave astronomy are organized by the LSC, which includes more than 1000 scientists worldwide, as well as 440,000 active Einstein@Home users as of December 2016. LIGO is the largest and most ambitious project ever funded by the NSF.In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry C. Barish 'for decisive contributions to the LIGO detector and the observation of gravitational waves.' As of December 2018, LIGO has made eleven detections of gravitational waves, of which ten are from binary black hole mergers. The other event was the first detection of a collision of two neutron stars, on 17 August 2017 which simultaneously produced optical signals detectable by conventional telescopes. All eleven events were observed in data from the first and second observing runs of Advanced LIGO. The LIGO concept built upon early work by many scientists to test a component of Albert Einstein's theory of relativity, the existence of gravitational waves. Starting in the 1960s, American scientists including Joseph Weber, as well as Soviet scientists Mikhail Gertsenshtein and Vladislav Pustovoit, conceived of basic ideas and prototypes of laser interferometry, and in 1967 Rainer Weiss of MIT published an analysis of interferometer use and initiated the construction of a prototype with military funding, but it was terminated before it could become operational. Starting in 1968, Kip Thorne initiated theoretical efforts on gravitational waves and their sources at Caltech, and was convinced that gravitational wave detection would eventually succeed. Prototype interferometric gravitational wave detectors (interferometers) were built in the late 1960s by Robert L. Forward and colleagues at Hughes Research Laboratories (with mirrors mounted on a vibration isolated plate rather than free swinging), and in the 1970s (with free swinging mirrors between which light bounced many times) by Weiss at MIT, and then by Heinz Billing and colleagues in Garching Germany, and then by Ronald Drever, James Hough and colleagues in Glasgow, Scotland. In 1980, the NSF funded the study of a large interferometer led by MIT (Paul Linsay, Peter Saulson, Rainer Weiss), and the following year, Caltech constructed a 40-meter prototype (Ronald Drever and Stan Whitcomb). The MIT study established the feasibility of interferometers at a 1-kilometer scale with adequate sensitivity.

[ "Binary number", "Detector", "Black hole", "Interferometry", "Gravitational wave", "TAMA 300", "Gravitational-wave astronomy", "GW151226", "KAGRA", "Kilonova" ]
Parent Topic
Child Topic
    No Parent Topic