language-icon Old Web
English
Sign In

Deep learning

Deep learning (also known as deep structured learning or hierarchical learning) is part of a broader family of machine learning methods based on artificial neural networks. Learning can be supervised, semi-supervised or unsupervised.'Realistically, deep learning is only part of the larger challenge of building intelligent machines. Such techniques lack ways of representing causal relationships (...) have no obvious ways of performing logical inferences, and they are also still a long way from integrating abstract knowledge, such as information about what objects are, what they are for, and how they are typically used. The most powerful A.I. systems, like Watson (...) use techniques like deep learning as just one element in a very complicated ensemble of techniques, ranging from the statistical technique of Bayesian inference to deductive reasoning.' Deep learning (also known as deep structured learning or hierarchical learning) is part of a broader family of machine learning methods based on artificial neural networks. Learning can be supervised, semi-supervised or unsupervised. Deep learning architectures such as deep neural networks, deep belief networks, recurrent neural networks and convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, audio recognition, social network filtering, machine translation, bioinformatics, drug design, medical image analysis, material inspection and board game programs, where they have produced results comparable to and in some cases superior to human experts. Artificial Neural Networks (ANNs) were inspired by information processing and distributed communication nodes in biological systems. ANNs have various differences from biological brains. Specifically, neural networks tend to be static and symbolic, while the biological brain of most living organisms is dynamic (plastic) and analog. Deep learning is a class of machine learning algorithms that(pp199–200) use multiple layers to progressively extract higher level features from raw input. For example, in image processing, lower layers may identify edges, while higher layers may identify human-meaningful items such as digits or letters or faces. Most modern deep learning models are based on artificial neural networks, specifically, Convolutional Neural Networks (CNN)s, although they can also include propositional formulas or latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep Boltzmann machines. In deep learning, each level learns to transform its input data into a slightly more abstract and composite representation. In an image recognition application, the raw input may be a matrix of pixels; the first representational layer may abstract the pixels and encode edges; the second layer may compose and encode arrangements of edges; the third layer may encode a nose and eyes; and the fourth layer may recognize that the image contains a face. Importantly, a deep learning process can learn which features to optimally place in which level on its own. (Of course, this does not completely obviate the need for hand-tuning; for example, varying numbers of layers and layer sizes can provide different degrees of abstraction.) The 'deep' in 'deep learning' refers to the number of layers through which the data is transformed. More precisely, deep learning systems have a substantial credit assignment path (CAP) depth. The CAP is the chain of transformations from input to output. CAPs describe potentially causal connections between input and output. For a feedforward neural network, the depth of the CAPs is that of the network and is the number of hidden layers plus one (as the output layer is also parameterized). For recurrent neural networks, in which a signal may propagate through a layer more than once, the CAP depth is potentially unlimited. No universally agreed upon threshold of depth divides shallow learning from deep learning, but most researchers agree that deep learning involves CAP depth > 2. CAP of depth 2 has been shown to be a universal approximator in the sense that it can emulate any function. Beyond that more layers do not add to the function approximator ability of the network. Deep models (CAP > 2) are able to extract better features than shallow models and hence, extra layers help in learning features. Deep learning architectures are often constructed with a greedy layer-by-layer method. Deep learning helps to disentangle these abstractions and pick out which features improve performance. For supervised learning tasks, deep learning methods obviate feature engineering, by translating the data into compact intermediate representations akin to principal components, and derive layered structures that remove redundancy in representation.

[ "Artificial neural network", "Machine learning", "Artificial intelligence", "Google Brain", "Restricted Boltzmann machine", "MNIST database", "residual neural network", "Neocognitron" ]
Parent Topic
Child Topic
    No Parent Topic