language-icon Old Web
English
Sign In

Whole genome sequencing

Whole genome sequencing (also known as WGS, full genome sequencing, complete genome sequencing, or entire genome sequencing) is ostensibly the process of determining the complete DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. In practice, genome sequences that are nearly complete are also called whole genome sequences. Whole genome sequencing (also known as WGS, full genome sequencing, complete genome sequencing, or entire genome sequencing) is ostensibly the process of determining the complete DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. In practice, genome sequences that are nearly complete are also called whole genome sequences. Whole genome sequencing has largely been used as a research tool, but is currently being introduced to clinics. In the future of personalized medicine, whole genome sequence data may be an important tool to guide therapeutic intervention. The tool of gene sequencing at SNP level is also used to pinpoint functional variants from association studies and improve the knowledge available to researchers interested in evolutionary biology, and hence may lay the foundation for predicting disease susceptibility and drug response. Whole genome sequencing should not be confused with DNA profiling, which only determines the likelihood that genetic material came from a particular individual or group, and does not contain additional information on genetic relationships, origin or susceptibility to specific diseases. In addition, whole genome sequencing should not be confused with methods that sequence specific subsets of the genome - such methods include whole exome sequencing (1-2% of the genome) or SNP genotyping (<0.1% of the genome). As of 2017 there were no complete genomes for any mammals, including humans. Between 4% to 9% of the human genome, mostly satellite DNA, had not been sequenced. The DNA sequencing methods used in the 1970s and 1980s were manual, for example Maxam-Gilbert sequencing and Sanger sequencing. The shift to more rapid, automated sequencing methods in the 1990s finally allowed for sequencing of whole genomes. The first organism to have its entire genome sequenced was Haemophilus influenzae in 1995. After it, the genomes of other bacteria and some archaea were first sequenced, largely due to their small genome size. H. influenzae has a genome of 1,830,140 base pairs of DNA. In contrast, eukaryotes, both unicellular and multicellular such as Amoeba dubia and humans (Homo sapiens) respectively, have much larger genomes (see C-value paradox). Amoeba dubia has a genome of 700 billion nucleotide pairs spread across thousands of chromosomes. Humans contain fewer nucleotide pairs (about 3.2 billion in each germ cell - note the exact size of the human genome is still being revised) than A. dubia however their genome size far outweighs the genome size of individual bacteria. The first bacterial and archaeal genomes, including that of H. influenzae, were sequenced by Shotgun sequencing. In 1996 the first eukaryotic genome (Saccharomyces cerevisiae) was sequenced. S. cerevisiae, a model organism in biology has a genome of only around 12 million nucleotide pairs, and was the first unicellular eukaryote to have its whole genome sequenced. The first multicellular eukaryote, and animal, to have its whole genome sequenced was the nematode worm: Caenorhabditis elegans in 1998. Eukaryotic genomes are sequenced by several methods including Shotgun sequencing of short DNA fragments and sequencing of larger DNA clones from DNA libraries such as bacterial artificial chromosomes (BACs) and yeast artificial chromosomes (YACs). In 1999, the entire DNA sequence of human chromosome 22, the shortest human autosome, was published. By the year 2000, the second animal and second invertebrate (yet first insect) genome was sequenced - that of the fruit fly Drosophila melanogaster - a popular choice of model organism in experimental research. The first plant genome - that of the model organism Arabidopsis thaliana - was also fully sequenced by 2000. By 2001, a draft of the entire human genome sequence was published. The genome of the laboratory mouse Mus musculus was completed in 2002. In 2004, the Human Genome Project published an incomplete version of the human genome.

[ "Genome", "2 base encoding", "Tymovirales", "Genus Aviadenovirus", "Myroides sp.", "Himetobi P virus" ]
Parent Topic
Child Topic
    No Parent Topic