language-icon Old Web
English
Sign In

Thermosphere

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions in the ionosphere. Taking its name from the Greek θερμός (pronounced thermos) meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass (see turbosphere). Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 1,700 °C (3,100 °F) or more. Radiation causes the atmosphere particles in this layer to become electrically charged (see ionosphere), enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although by the criteria set for the definition of the Kármán line, the thermosphere itself is part of space. The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions in the ionosphere. Taking its name from the Greek θερμός (pronounced thermos) meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass (see turbosphere). Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 1,700 °C (3,100 °F) or more. Radiation causes the atmosphere particles in this layer to become electrically charged (see ionosphere), enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although by the criteria set for the definition of the Kármán line, the thermosphere itself is part of space. The highly diluted gas in this layer can reach 2,500 °C (4,530 °F) during the day. Despite the high temperature, an observer or object will experience cold temperatures in the thermosphere, because the extremely low density of gas (practically a hard vacuum) is insufficient for the molecules to conduct heat. A normal thermometer will read significantly below 0 °C (32 °F), at least at night, because the energy lost by thermal radiation would exceed the energy acquired from the atmospheric gas by direct contact. In the anacoustic zone above 160 kilometres (99 mi), the density is so low that molecular interactions are too infrequent to permit the transmission of sound. The dynamics of the thermosphere are dominated by atmospheric tides, which are driven predominantly by diurnal heating. Atmospheric waves dissipate above this level because of collisions between the neutral gas and the ionospheric plasma. The International Space Station orbits the Earth within the middle of the thermosphere, between 330 and 435 kilometres (205 and 270 mi). It is convenient to separate the atmospheric regions according to the two temperature minima at about 12 km altitude (the tropopause) and at about 85 km (the mesopause) (Figure 1). The thermosphere (or the upper atmosphere) is the height region above 85 km, while the region between the tropopause and the mesopause is the middle atmosphere (stratosphere and mesosphere) where absorption of solar UV radiation generates the temperature maximum near 45 km altitude and causes the ozone layer. The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρA H  ≃ 1 kg/cm2 within a column of one square centimeter above the ground (with ρA = 1.29 kg/m3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height). 80% of that mass is concentrated within the troposphere. The mass of the thermosphere above about 85 km is only 0.002% of the total mass. Therefore, no significant energetic feedback from the thermosphere to the lower atmospheric regions can be expected. Turbulence causes the air within the lower atmospheric regions below the turbopause at about 110 km to be a mixture of gases that does not change its composition. Its mean molecular weight is 29 g/mol with molecular oxygen (O2) and nitrogen (N2) as the two dominant constituents. Above the turbopause, however, diffusive separation of the various constituents is significant, so that each constituent follows its own barometric height structure with a scale height inversely proportional to its molecular weight. The lighter constituents atomic oxygen (O), helium (He), and hydrogen (H) successively dominate above about 200 km altitude and vary with geographic location, time, and solar activity. The ratioN2/O which is a measure of the electron density at the ionospheric F region is highly affected by these variations. These changes follow from the diffusion of the minor constituents through the major gas component during dynamic processes. The thermosphere contains an appreciable concentration of elemental sodium located in a 10-km thick band that occurs at the edge of the mesosphere, 80 to 100 km above Earth's surface. The sodium has an average concentration of 400,000 atoms per cubic centimeter. This band is regularly replenished by sodium sublimating from incoming meteors. Astronomers have begun utilizing this sodium band to create 'guide stars' as part of the optical correction process in producing ultra-sharp ground-based observations. The thermospheric temperature can be determined from density observations as well as from direct satellite measurements. The temperature vs. altitude z in Fig. 1 can be simulated by the so-called Bates profile:

[ "Altitude", "Ionosphere", "Atmosphere", "Turbopause", "NRLMSISE-00", "Special Sensor Ultraviolet Limb Imager", "Jacchia Reference Atmosphere", "Millstone Hill" ]
Parent Topic
Child Topic
    No Parent Topic