language-icon Old Web
English
Sign In

Glass cockpit

A glass cockpit is an aircraft cockpit that features electronic (digital) flight instrument displays, typically large LCD screens, rather than the traditional style of analog dials and gauges. While a traditional cockpit (nicknamed a 'steam cockpit' within aviation circles) relies on numerous mechanical gauges to display information, a glass cockpit uses several displays driven by flight management systems, that can be adjusted (multi-function display) to display flight information as needed. This simplifies aircraft operation and navigation and allows pilots to focus only on the most pertinent information. They are also popular with airline companies as they usually eliminate the need for a flight engineer, saving costs. In recent years the technology has also become widely available in small aircraft.Training is clearly one of the key components to reducing the accident rate of light planes equipped with glass cockpits, and this study clearly demonstrates the life and death importance of appropriate training on these complex systems... While the technological innovations and flight management tools that glass cockpit equipped airplanes bring to the general aviation community should reduce the number of fatal accidents, we have not—unfortunately—seen that happen. A glass cockpit is an aircraft cockpit that features electronic (digital) flight instrument displays, typically large LCD screens, rather than the traditional style of analog dials and gauges. While a traditional cockpit (nicknamed a 'steam cockpit' within aviation circles) relies on numerous mechanical gauges to display information, a glass cockpit uses several displays driven by flight management systems, that can be adjusted (multi-function display) to display flight information as needed. This simplifies aircraft operation and navigation and allows pilots to focus only on the most pertinent information. They are also popular with airline companies as they usually eliminate the need for a flight engineer, saving costs. In recent years the technology has also become widely available in small aircraft. As aircraft displays have modernized, the sensors that feed them have modernized as well. Traditional gyroscopic flight instruments have been replaced by electronic attitude and heading reference systems (AHRS) and air data computers (ADCs), improving reliability and reducing cost and maintenance. GPS receivers are usually integrated into glass cockpits. Early glass cockpits, found in the McDonnell Douglas MD-80/90, Boeing 737 Classic, 757 and 767-200/-300, ATR 42, ATR 72 and in the Airbus A300-600 and A310, used Electronic Flight Instrument Systems (EFIS) to display attitude and navigational information only, with traditional mechanical gauges retained for airspeed, altitude, vertical speed, and engine performance. Later glass cockpits, found in the Boeing 737NG, 747-400, 767-400, 777, A320 and later Airbuses, Ilyushin Il-96 and Tupolev Tu-204 have completely replaced the mechanical gauges and warning lights in previous generations of aircraft. While glass cockpit-equipped aircraft throughout the late 20th century still retained analog altimeters, attitude, and airspeed indicators as standby instruments in case the EFIS displays failed, more modern aircraft have increasingly been using digital standby instruments as well, such as the integrated standby instrument system. Glass cockpits originated in military aircraft in the late 1960s and early 1970s; an early example is the Mark II avionics of the F-111D (first ordered in 1967, delivered from 1970–73), which featured a multi-function display. Prior to the 1970s, air transport operations were not considered sufficiently demanding to require advanced equipment like electronic flight displays. Also, computer technology was not at a level where sufficiently light and powerful circuits were available. The increasing complexity of transport aircraft, the advent of digital systems and the growing air traffic congestion around airports began to change that. The Boeing 2707 was one of the earliest commercial aircraft designed with a glass cockpit. Most cockpit instruments were still analog, but CRT displays were to be used for the Attitude indicator and HSI. However, the 2707 was cancelled in 1971 after insurmountable technical difficulties and ultimately the end of project funding by the US government. The average transport aircraft in the mid-1970s had more than one hundred cockpit instruments and controls, and the primary flight instruments were already crowded with indicators, crossbars, and symbols, and the growing number of cockpit elements were competing for cockpit space and pilot attention. As a result, NASA conducted research on displays that could process the raw aircraft system and flight data into an integrated, easily understood picture of the flight situation, culminating in a series of flights demonstrating a full glass cockpit system. The success of the NASA-led glass cockpit work is reflected in the total acceptance of electronic flight displays beginning with the introduction of the MD-80 in 1979. Airlines and their passengers alike have benefited. The safety and efficiency of flights have been increased with improved pilot understanding of the aircraft's situation relative to its environment (or 'situational awareness'). By the end of the 1990s, liquid-crystal display (LCD) panels were increasingly favored among aircraft manufacturers because of their efficiency, reliability and legibility. Earlier LCD panels suffered from poor legibility at some viewing angles and poor response times, making them unsuitable for aviation. Modern aircraft such as the Boeing 737 Next Generation, 777, 717, 747-400ER, 747-8F 767-400ER, 747-8, and 787, Airbus A320 family (later versions), A330 (later versions), A340-500/600, A340-300 (later versions), A380 and A350 are fitted with glass cockpits consisting of LCD units.

[ "Fly-by-wire", "Flight management system" ]
Parent Topic
Child Topic
    No Parent Topic