language-icon Old Web
English
Sign In

Nanoparticle

Nanoparticles are particles between 1 and 100 nanometres (nm) in size with a surrounding interfacial layer. The interfacial layer is an integral part of nanoscale matter, fundamentally affecting all of its properties. The interfacial layer typically consists of ions, inorganic and organic molecules. Organic molecules coating inorganic nanoparticles are known as stabilizers, capping and surface ligands, or passivating agents. In nanotechnology, a particle is defined as a small object that behaves as a whole unit with respect to its transport and properties. Particles are further classified according to diameter. According to ISO Technical Specification 80004, a nanoparticle is defined as a nano-object with all three external dimensions in the nanoscale, whose longest and shortest axes do not differ significantly, with a significant difference typically being a factor of at least 3. Nanoparticles can exhibit size-related properties significantly different from those of either fine particles or bulk materials. Nanoclusters have at least one dimension between 1 and 10 nanometers and a narrow size distribution. Nanopowders are agglomerates of ultrafine particles, nanoparticles, or nanoclusters. Nanometer-sized single crystals, or single-domain ultrafine particles, are often referred to as nanocrystals. 'Ultrafine particles' (UFP) are synonymous with nanoparticles and range between 1 and 100 nm in size, as opposed to 'fine particles' sized between 100 and 2,500 nm and 'coarse particles' ranging from 2,500 to 10,000 nm. During the 1970s and 80s, when the first thorough fundamental studies with nanoparticles were underway in the United States (by Granqvist and Buhrman) and Japan (within an ERATO Project), researchers used the term ultrafine particles. However, during the 1990s, before the National Nanotechnology Initiative was launched in the United States, the term nanoparticle had become more common (for example, see the same senior author's paper 20 years later addressing the same issue, lognormal distribution of sizes). The terms colloid and nanoparticle are not interchangeable. A colloid is a mixture which has solid particles dispersed in a liquid medium. The term applies only if the particles are larger than atomic dimensions but small enough to exhibit Brownian motion, with the critical size range (or particle diameter) typically ranging from nanometers (10−9 m) to micrometers (10−6 m). Colloids can contain particles too large to be nanoparticles, and nanoparticles can exist in non-colloidal form, for examples as a powder or in a solid matrix. Although nanoparticles are associated with modern science, they have a long history. Nanoparticles were used by artisans as far back as Rome in the fourth century in the famous Lycurgus cup made of dichroic glass as well as the ninth century in Mesopotamia for creating a glittering effect on the surface of pots. In modern times, pottery from the Middle Ages and Renaissance often retains a distinct gold- or copper-colored metallic glitter. This luster is caused by a metallic film that was applied to the transparent surface of a glazing. The luster can still be visible if the film has resisted atmospheric oxidation and other weathering. The luster originates within the film itself, which contains silver and copper nanoparticles dispersed homogeneously in the glassy matrix of the ceramic glaze. These nanoparticles are created by the artisans by adding copper and silver salts and oxides together with vinegar, ochre, and clay on the surface of previously-glazed pottery. The object is then placed into a kiln and heated to about 600 °C in a reducing atmosphere. In heat the glaze softens, causing the copper and silver ions to migrate into the outer layers of the glaze. There the reducing atmosphere reduced the ions back to metals, which then came together forming the nanoparticles that give the color and optical effects. Luster technique showed that ancient craftsmen had a sophisticated empirical knowledge of materials. The technique originated in the Muslim world. As Muslims were not allowed to use gold in artistic representations, they sought a way to create a similar effect without using real gold. The solution they found was using luster. Michael Faraday provided the first description, in scientific terms, of the optical properties of nanometer-scale metals in his classic 1857 paper. In a subsequent paper, the author (Turner) points out that: 'It is well known that when thin leaves of gold or silver are mounted upon glass and heated to a temperature that is well below a red heat (~500 °C), a remarkable change of properties takes place, whereby the continuity of the metallic film is destroyed. The result is that white light is now freely transmitted, reflection is correspondingly diminished, while the electrical resistivity is enormously increased.'

[ "Chemical engineering", "Quantum mechanics", "Nanotechnology", "Inorganic chemistry", "Janus particles", "α fe2o3 nanoparticles", "Multidrug resistance inhibition", "Butyl cyanoacrylate", "PVP polymer" ]
Parent Topic
Child Topic
    No Parent Topic