language-icon Old Web
English
Sign In

Miniaturization

Miniaturization (Br.Eng.: Miniaturisation) is the trend to manufacture ever smaller mechanical, optical and electronic products and devices. Examples include miniaturization of mobile phones, computers and vehicle engine downsizing. In electronics, Moore's law, which was named after Intel co-founder Gordon Moore, predicted that the number of transistors on an integrated circuit for minimum component cost doubles every 18 months. This enables processors to be built in smaller sizes. Miniaturization (Br.Eng.: Miniaturisation) is the trend to manufacture ever smaller mechanical, optical and electronic products and devices. Examples include miniaturization of mobile phones, computers and vehicle engine downsizing. In electronics, Moore's law, which was named after Intel co-founder Gordon Moore, predicted that the number of transistors on an integrated circuit for minimum component cost doubles every 18 months. This enables processors to be built in smaller sizes. The history of miniaturization is associated with the history of information technology based on the succession of switching devices, each smaller, faster, cheaper than its predecessor. During the period referred to as the Second Industrial Revolution, miniaturization was confined to two-dimensional electronic circuits used for the manipulation of information. This orientation is demonstrated in the use of vacuum tubes in the first general-purpose computers. The technology gave way to the transistor invented in the 1950s and then the integrated circuit approach developed afterward. Gordon Moore described the development of miniaturization in 1975 during the International Electron Devices meeting, where he confirmed his earlier prediction that silicon integrated circuit would dominate electronics, underscoring that during the period such circuits were already high-performance devices and starting to become cheaper. This was made possible by a reliable manufacturing process, which involved the fabrication in a batch process. It employed photolithographic, mechanical, and chemical processing steps to create multiple transistors on a single wafer of silicon. The measure of this process was its yield, which is the ratio of working devices to those with defects and, given a satisfactory yield, a smaller transistor means that more can be on a single wafer, making each one cheaper to produce.

[ "Electronic engineering", "Optoelectronics", "Electrical engineering", "Nanotechnology", "Precision engineering", "Sericoderus", "antenna miniaturization" ]
Parent Topic
Child Topic
    No Parent Topic