language-icon Old Web
English
Sign In

Orientation (vector space)

In mathematics, orientation is a geometric notion that in two dimensions allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left-handed or right-handed. In linear algebra, the notion of orientation makes sense in arbitrary finite dimension. In this setting, the orientation of an ordered basis is a kind of asymmetry that makes a reflection impossible to replicate by means of a simple rotation. Thus, in three dimensions, it is impossible to make the left hand of a human figure into the right hand of the figure by applying a rotation alone, but it is possible to do so by reflecting the figure in a mirror. As a result, in the three-dimensional Euclidean space, the two possible basis orientations are called right-handed and left-handed (or right-chiral and left-chiral). In mathematics, orientation is a geometric notion that in two dimensions allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left-handed or right-handed. In linear algebra, the notion of orientation makes sense in arbitrary finite dimension. In this setting, the orientation of an ordered basis is a kind of asymmetry that makes a reflection impossible to replicate by means of a simple rotation. Thus, in three dimensions, it is impossible to make the left hand of a human figure into the right hand of the figure by applying a rotation alone, but it is possible to do so by reflecting the figure in a mirror. As a result, in the three-dimensional Euclidean space, the two possible basis orientations are called right-handed and left-handed (or right-chiral and left-chiral). The orientation on a real vector space is the arbitrary choice of which ordered bases are 'positively' oriented and which are 'negatively' oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called unoriented. Let V be a finite-dimensional real vector space and let b1 and b2 be two ordered bases for V. It is a standard result in linear algebra that there exists a unique linear transformation A : V → V that takes b1 to b2. The bases b1 and b2 are said to have the same orientation (or be consistently oriented) if A has positive determinant; otherwise they have opposite orientations. The property of having the same orientation defines an equivalence relation on the set of all ordered bases for V. If V is non-zero, there are precisely two equivalence classes determined by this relation. An orientation on V is an assignment of +1 to one equivalence class and −1 to the other. Every ordered basis lives in one equivalence class or another. Thus any choice of a privileged ordered basis for V determines an orientation: the orientation class of the privileged basis is declared to be positive. For example, the standard basis on Rn provides a standard orientation on Rn (in turn, the orientation of the standard basis depends on the orientation of the Cartesian coordinate system on which it is built). Any choice of a linear isomorphism between V and Rn will then provide an orientation on V. The ordering of elements in a basis is crucial. Two bases with a different ordering will differ by some permutation. They will have the same/opposite orientations according to whether the signature of this permutation is ±1. This is because the determinant of a permutation matrix is equal to the signature of the associated permutation. Similarly, let A be a nonsingular linear mapping of vector space Rn to Rn. This mapping is orientation-preserving if its determinant is positive. For instance, in R3 a rotation around the Z Cartesian axis by an angle α is orientation-preserving: while a reflection by the XY Cartesian plane is not orientation-preserving: The concept of orientation degenerates in the zero-dimensional case. A zero-dimensional vector space has only a single point, the zero vector. Consequently, the only basis of a zero-dimensional vector space is the empty set ∅ {displaystyle emptyset } . Therefore, there is a single equivalence class of ordered bases, namely, the class { ∅ } {displaystyle {emptyset }} whose sole member is the empty set. This means that an orientation of a zero-dimensional space is a function

[ "Geometry", "Algebra" ]
Parent Topic
Child Topic
    No Parent Topic