language-icon Old Web
English
Sign In

Energy crop

Energy crops are low-cost and low-maintenance crops grown solely for energy production (not for food). The crops are processed into solid, liquid or gaseous fuels, such as pellets, bioethanol or biogas. The fuels are burned to generate power or heat. Energy crops are low-cost and low-maintenance crops grown solely for energy production (not for food). The crops are processed into solid, liquid or gaseous fuels, such as pellets, bioethanol or biogas. The fuels are burned to generate power or heat. The plants are generally categorized as woody or herbaceous. Woody plants include willow and poplar, herbaceous plants include Miscanthus x giganteus and Pennisetum purpureum (both known as elephant grass). Herbaceous crops, while physically smaller than trees, store roughly twice the amount of CO2 (in the form of carbon) below ground, compared to woody crops. Through biotechnological procedures such as genetic modification plants can be manipulated to create higher yields.Relatively high yields can also be realized with existing cultivars.:250 However, some additional advantages such as reduced associated costs (i.e. costs during the manufacturing process ) and less water use can only be accomplished by using genetically modified crops. The amount of carbon sequestrated and the amount of GHG (greenhouse gases) emitted will determine if the total GHG life cycle cost of a bio-energy project is positive, neutral or negative. Specifically, a GHG/carbon negative life cycle is possible if the total below-ground carbon accumulation more than compensates for the above-ground total life-cycle GHG emissions. Whitaker et al. estimates that for Miscanthus x giganteus, carbon neutrality and even negativity is within reach. Basically, the yield and related carbon sequestration is so high that it more than compensates for both farm operations emissions, fuel conversion emissions and transport emissions. The graphic on the right displays two CO2 negative Miscanthus x giganteus production pathways, represented in gram CO2-equivalents per megajoule. The yellow diamonds represent mean values. One should note that successful sequestration is dependent on planting sites, as the best soils for sequestration are those that are currently low in carbon. The varied results displayed in the graph highlights this fact. Milner et al. argues that for the UK, successful sequestration is expected for arable land over most of England and Wales, with unsuccessful sequestration expected in parts of Scotland, due to already carbon rich soils (existing woodland). Also, for Scotland, the relatively lower yields in this colder climate makes CO2 negativity harder to achieve. Soils already rich in carbon includes peatland and mature forest. Grassland can also be carbon rich, however Milner et al. further argues that the most successful carbon sequestration in the UK takes place below improved grasslands. The bottom graphic displays the estimated yield necessary to achieve CO2 negativity for different levels of existing soil carbon saturation. The perennial rather than annual nature of Miscanthus crops implies that the significant below-ground carbon accumulation each year is allowed to continue undisturbed. No annual plowing or digging means no increased carbon oxidation and no stimulation of the microbe populations in the soil, and therefore no accelerated carbon-to-CO2 conversion happening in the soil every spring. Solid biomass, often pelletized, is used for combustion in thermal power stations, either alone or co-fired with other fuels. Alternatively it may be used for heat or combined heat and power (CHP) production. In short rotation coppice (SRC) agriculture, fast growing tree species like willow and poplar are grown and harvested in short cycles of three to five years. These trees grow best in wet soil conditions. An influence on local water conditions can not be excluded. Establishment close to vulnerable wetland should be avoided. Whole crops such as maize, Sudan grass, millet, white sweet clover, and many others can be made into silage and then converted into biogas.Anaerobic digesters or biogas plants can be directly supplemented with energy crops once they have been ensiled into silage. The fastest growing sector of German biofarming has been in the area of 'Renewable Energy Crops' on nearly 500,000 ha (1,200,000 acres) of land (2006). Energy crops can also be grown to boost gas yields where feedstocks have a low energy content, such as manures and spoiled grain. It is estimated that the energy yield presently of bioenergy crops converted via silage to methane is about 2 GWh/km2 (1.8×1010 BTU/sq mi) annually. Small mixed cropping enterprises with animals can use a portion of their acreage to grow and convert energy crops and sustain the entire farms energy requirements with about one fifth of the acreage. In Europe and especially Germany, however, this rapid growth has occurred only with substantial government support, as in the German bonus system for renewable energy. Similar developments of integrating crop farming and bioenergy production via silage-methane have been almost entirely overlooked in N. America, where political and structural issues and a huge continued push to centralize energy production has overshadowed positive developments.

[ "Bioenergy", "Sida hermaphrodita", "Miscanthus lutarioriparius" ]
Parent Topic
Child Topic
    No Parent Topic