Photosynthetic Characteristics and the Ratios of Chlorophyll, β‐Carotene, and the Components of the Xanthophyll Cycle Upon a Sudden Increase in Growth Light Regime in Several Plant Species*

1989 
Among three species, Gossypium hirsutum, Rhizophora mangle, and Monstera deliciosa, which were transferred from low to high growth PFD, only small decreases in the efficiency of photochemical energy conversion were observed in those plants which exhibited an increase in photosynthetic capacity. Leaves of plants which showed no increase in photosynthetic capacity experienced a continuous decrease in photochemical efficiency, accompanied by a more pronounced loss of chlorophyll than that observed in the former group. In all species marked increases in the xanthophyll/β-carotene ratio resulted from small increases in lutein, and several-fold increases in the sum of the three components of the xanthophyll cycle, zeaxanthin, antheraxanthin, and violaxanthin. A strong increase in the level of zeaxanthin was only partially matched by a decrease of violaxanthin to zero, and was further paralleled by a decrease in β-carotene. Antiparallel changes in the sum of zeaxanthin + antheraxanthin + violaxanthin and β-carotene between morning and evening were observed in all species. These diel changes were overlaid on a net increase in β-carotene as well as total carotenoid content in those plants in which photosynthetic capacity increased. In those, however, which exhibited no photosynthetic acclimation upon transfer to high light, a decrease in both β-carotene and total carotenoid content was observed. Rhizophora mangle grown at 100 % seawater exhibited a particularly high capacity for increasing the level of zeaxanthin in response to high light.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    61
    Citations
    NaN
    KQI
    []