Model Predictive Trajectory Tracking Control of Electro-hydraulic Actuator in Legged Robot with Multi-scale Online Estimator

2020 
This paper addresses the trajectory tracking problem for constrained high dynamic electro-hydraulic actuator in the presence of time-varying parameters, high frequency external load interference, measurement noise and some unmeasurable states. An adaptive robust optimal control scheme is proposed for the electro-hydraulic actuator in legged robot. The framework of our presented scheme is based on a linear time-varying model predictive controller (LTV-MPC) embedded with a multi-scale online estimator (MEKF). With fast- varying and slow- varying time scales, the MEKF part is used not only for measurable states filtering and unmeasurable states estimation, but also for time-varying parameters and external load interference estimation, which will be integrated into the mpc model in real time. The LTV-MPC part is a trajectory tracking controller designed by constrained MPC with an approximate high-precision real-time model and a rapidly solved cost function, which guarantees that the input and output constraints are satisfied during the receding horizon and optimal control process. Finally, with a series of highly dynamic conditions, the comparison experiment results show that the proposed controller has a simple design process, strong adaptive robust performance and trajectory tracking performance, which verifies the effectiveness of the control scheme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    6
    Citations
    NaN
    KQI
    []