Ammonium nitrate promotes sulfate formation through uptake kinetic regime

2021 
Abstract. Although the anthropogenic emissions of SO2 have decreased significantly in China, the decrease in SO42− in PM2.5 is much smaller than that of SO2. This implies an enhanced formation rate of SO42− in the ambient air, and the mechanism is still under debate. This work investigated the formation mechanism of particulate sulfate based on statistical analysis of long-term observations in Shijiazhuang and Beijing supported with flow tube experiments. Our main finding was that the SOR was exponentially correlated with ambient RH in Shijiazhuang (SOR = 0.15 + 0.0032exp(RH/16.2)) and Beijing (SOR = −0.045 + 0.12exp(RH/37.8)). In Shijiazhuang, the SOR is linearly correlated with the ratio of aerosol water content (AWC) in PM2.5 (SOR = 0.15 + 0.40AWC/PM2.5). Kinetics studies suggest that uptake of SO2 instead of oxidation of S(IV) in particle-phase is the rate determining step for sulfate formation. NH4NO3 plays an important role in the AWC and the transition of particle phase, which is a crucial factor determining the uptake kinetics of SO2 and the enhanced SOR during haze days. Our results show that NH3 significantly promoted the uptake of SO2, subsequently, the SOR, while NO2 had little influence on SO2 uptake and SOR in the presence of NH3.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    102
    References
    2
    Citations
    NaN
    KQI
    []