First Light And Reionisation Epoch Simulations (FLARES) III: The properties of massive dusty galaxies at cosmic dawn

2021 
Using the First Light And Reionisation Epoch Simulations (\textsc{Flares}) we explore the dust driven properties of massive high-redshift galaxies at $z\in[5,10]$. By post-processing the galaxy sample using the radiative transfer code \textsc{skirt} we obtain the full spectral energy distribution. We explore the resultant luminosity functions, IRX-$\beta$ relations as well as the luminosity-weighted dust temperatures in the Epoch of Reionisation (EoR). We find that most of our results are in agreement with the current set of observations, but under-predict the number densities of bright IR galaxies, which are extremely biased towards the most overdense regions. We see that the \textsc{Flares} IRX-$\beta$ relation (for $5\le z\le8$) predominantly follows the local starburst relation. The IRX shows an increase with stellar mass, plateauing at the high-mass end ($\sim10^{10}$M$_{\odot}$) and shows no evolution in the median normalisation with redshift. We also look at the dependence of the peak dust temperature (T$_{\mathrm{peak}}$) on various galaxy properties including the stellar mass, IR luminosity and sSFR, finding the correlation to be strongest with sSFR. The luminosity-weighted dust temperatures increase towards higher redshifts, with the slope of the T$_{\mathrm{peak}}$ - redshift relation showing a higher slope than the lower redshift relations obtained from previous observational and theoretical works. The results from \textsc{Flares}, which is able to provide a better statistical sample of high-redshift galaxies compared to other simulations, provides a distinct vantage point for the high-redshift Universe.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    1
    Citations
    NaN
    KQI
    []