Low frequency radio properties of the z > 5 quasar population

2021 
Optically luminous quasars at z > 5 are important probes of super-massive black hole (SMBH) formation. With new and future radio facilities, the discovery of the brightest low-frequency radio sources in this epoch would be an important new probe of cosmic reionization through 21-cm absorption experiments. In this work, we systematically study the low-frequency radio properties of a sample of 115 known spectroscopically confirmed z > 5 quasars using the second data release of the Low Frequency Array (LOFAR) Two Metre Sky survey (LoTSS-DR2), reaching noise levels of ∼80 µJy beam−1 (at 144 MHz) over an area of ∼ 5720 deg2 . We find that 41 sources (36%) are detected in LoTSS-DR2 at > 2σ significance and we explore the evolution of their radio properties (power, spectral index, and radio loudness) as a function of redshift and rest-frame ultra-violet properties. We obtain a median spectral index of −0.29+0.10 −0.09 by stacking 93 quasars using LoTSS-DR2 and Faint Images of the Radio Sky at Twenty Centimetres (FIRST) data at 1.4 GHz, in line with observations of quasars at z < 3. We compare the radio loudness of the high-z quasar sample to a lower-z quasar sample at z ∼ 2 and find that the two radio loudness distributions are consistent with no evolution, although the low number of high-z quasars means that we cannot rule out weak evolution. Furthermore, we make a first order empirical estimate of the z = 6 quasar radio luminosity function, which is used to derive the expected number of high-z sources that will be detected in the completed LoTSS survey. This work highlights the fact that new deep radio observations can be a valuable tool in selecting high-z quasar candidates for follow-up spectroscopic observations by decreasing contamination of stellar dwarfs and reducing possible selection biases introduced by strict colour cuts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []