Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials

2020 
Abstract Polymer-based materials are increasingly produced through fused deposition modelling (FDM) – an additive manufacturing process, due to its intrinsic advantages in manufacturing complex shapes and structures at low overhead costs. The versatility of this technology has attracted several industries to print complex geometrical structures. This underlines the importance of studying the mechanical strength of FDM printed polymeric materials, especially their fatigue behaviour in cyclic loading conditions. Conventionally manufactured polymeric materials (e.g. injection moulding) have superior fatigue performance than FDM printed materials. Unlike conventionally manufactured polymers, FDM-made polymers have layer by layer adhesion and the influence of printing parameters that make fatigue analysis complex and critical. The influences of printing parameters and printing material characteristics have a significant impact on the fatigue behaviour of these materials. The underlying mechanism behind the fatigue of FDM printed polymers is crucial for the assessment of these materials in structural applications. However, the fatigue behaviour of FDM printed polymeric materials has not been reviewed in detail. Therefore, this article aims to evaluate 3D printed polymeric materials’ fatigue properties. The importance of fatigue in the FDM printed biomedical materials is also reviewed, and more importantly, the novel FDM printed architected cellular material fatigue properties are also introduced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    117
    References
    32
    Citations
    NaN
    KQI
    []