Preparation of cell adhesive micropores by one-step potentiostatic polarization on 304 stainless steel:

2019 
Non-conventional electrochemical machining in micro-manufacturing has atomic-scale machining accuracy only in theory. By taking full advantage of the material heterogeneity, the micropores which most easily initiate at the surface stoichiometric inhomogeneities for stainless steel can be prospectively obtained with the size kept under control by adjusting the machining parameters. Taking the economy and efficiency into account, a one-step potentiostatic polarization method was established. Optimization of the machining parameters for achievement of microporous structure required by cell adhesive surface on 304 stainless steel in natural 15 wt% NaNO3 solution was confirmed. Based on the potentiodynamic polarization curve, a DC voltage of 5 V in the region of secondary passivation was selected due to the porous secondary passivation film which results in the initiation of large amounts of pores. The effects of the machining time on the pore size, coverage ratio, density, unevenness degree and adhesive cell ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    3
    Citations
    NaN
    KQI
    []