Synthesis of 3-Substituted Benzamides and 5-Substituted Isoquinolin-1(2H)-ones and Preliminary Evaluation as Inhibitors of Poly(ADP-ribose)polymerase (PARP)

1998 
Abstract Inhibitors of poly(ADP-ribose)polymerase (PARP) inhibit repair of damaged DNA and thus potentiate radiotherapy and chemotherapy of cancer. 3-Substituted benzamides and 5-substituted isoquinolin-1-ones have been synthesised and evaluated for inhibition of PARP. Reduction of 3-(bromoacetyl)benzamide, followed by treatment with base, gave RS -3-oxiranylbenzamide. Reduction of 3-(hydroxyacetyl)benzonitrile with bakers’ yeast gave the R -diol which was converted to R -3-(1,2-dihydroxyethyl)benzamide. Similar reduction of 3-(acetoxyacetyl)benzonitrile led towards the S -diol which was converted to its cyclic acetonide. E -2-(2,6-Dicyanophenyl)- N , N -dimethylethenamine was formed by condensation of 2,6-dicyanotoluene with dimethylformamide dimethyl acetal (DMFDMA); cyclisation under acidic conditions afforded 5-cyanoisoquinolin-1-one. Heck coupling of 5-iodoisoquinolin-1-one with propenoic acid formed E -3-(1-oxoisoquinolin-5-yl)propenoic acid. 3-Oxiranylbenzamide, 5-bromoisoquinolin-1-one and 5-iodoisoquinolin-1-one were among the most potent inhibitors of PARP activity in a preliminary screen in vitro.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    58
    Citations
    NaN
    KQI
    []