UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors

2018 
Metal/semiconductor nanocomposite systems with the ability of controllable holographic storage are fascinating for advancing information technology. Ag/TiO2 nanocomposite films present multicolor photochromism, which plays a key role in high-density optical memory. However, the film undergoes a reversible photo-redox reaction by the alternating action of visible and UV lights, which weakens the optical stability of stored information. To date, no effective method has been proposed to hinder the UV-erasure in the film. In this paper, the transferring behavior of electrons in a Schottky junction between Ag and TiO2 is inhibited effectively by introducing electron acceptors into the photochromic film. Plasmonic photo-dissolution is enhanced greatly, which is in accordance with the theoretical fitting based on the reversible photo-chemical reaction. Holograms can be written efficiently with high stability even under the destructive UV-irradiation, which are expected to be applied in an environmentally-stable photo-device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    8
    Citations
    NaN
    KQI
    []