Quantum stabilization of photonic spatial correlations

2019 
The driven, dissipative Bose-Hubbard model (BHM) provides a generic description of collective phases of interacting photons in cavity arrays. In the limit of strong optical nonlinearities (hard-core limit), the BHM maps on the dissipative, transverse-field XY model (XYM). The steady-state of the XYM can be analyzed using mean-field theory, which reveals a plethora of interesting dynamical phenomena. For example, strong hopping combined with a blue-detuned drive, leads to an instability of the homogeneous steady-state with respect to antiferromagnetic fluctuations. In this paper, we address the question whether such an antiferromagnetic instability survives in the presence of quantum correlations beyond the mean-field approximation. For that purpose, we employ a self-consistent $1/z$ expansion for the density matrix, where $z$ is the lattice coordination number, i.e., the number of nearest neighbours for each site. We show that quantum fluctuations stabilize a new homogeneous steady-state with antiferromagnetic correlations in agreement with exact numerical simulations for finite lattices. The latter manifests itself as short-ranged oscillations of the first and second-order spatial coherence functions of the photons emitted by the array.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    1
    Citations
    NaN
    KQI
    []