Nested MIMO Radar: Coarrays, Tensor Modeling and Angle Estimation

2020 
This article addresses the problem of joint direction of departure (DOD) and direction of arrival (DOA) estimation with nested bistatic multiple input multiple output (MIMO) radar using tensor decomposition. We first employ the two-level nested transmit and receive arrays to develop the sum-difference coarray for constructing the Toeplitz and spatial smoothing matrices. We then generalize the three-way tensor model from DOD and DOA dimensions, and derive the optimized tensor by maximizing the number of detectable targets, where the existing COMFAC technique is exploited for angle estimation. We show that the proposed method can identify more targets and achieve better performance by enforcing the three-way structure information compared with the subspace-based algorithms. We also show that the conventional tensor model is just a special case. Finally, we derive the coarray Cramer–Rao Bound (CRB) for the nested MIMO radar, and also conduct a study for the conditions under which the CRB exists. Numerical simulations are provided to validate the theoretical analysis and demonstrate the performance improvement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    39
    Citations
    NaN
    KQI
    []