High-Directivity Enhancement With Passive and Active Bypass Circuit Techniques for GaAs MMIC Microstrip Directional Couplers

2011 
This paper describes monolithic microwave integrated circuit microstrip directional couplers based on a new directivity enhancement technique. This technique utilizes a bypass circuit-a phase shifter and an attenuator-placed between the coupling and isolation ports to cancel out backward wave leakage to the coupling port, thereby enhancing directivity of the couplers. The bypass circuit can be implemented with a simple passive LCR circuit or an active heterojunction bipolar transistor (HBT) phase-inversion attenuation circuit. Edge-coupled-type microstrip spiral couplers using the passive and active bypass circuits were fabricated in a GaAs HBT process. Measurements are as follows. The coupler with the passive LCR bypass circuit delivers a -21-dB coupling factor and a 0.14-dB insertion loss (IL) at 2.6 GHz while keeping enhanced directivity of more than 30 dB with a 23.1% relative bandwidth. This corresponds to more than 21-dB improvement of directivity at the same frequency, compared to the coupler without the bypass circuit. For the coupler with the active attenuator, a peak directivity of 46 dB and more than 30-dB directivity with a 120% relative bandwidth are achieved while a -21-dB coupling factor and a 0.13-dB IL are delivered at 2 GHz. Additional measurements of HBT power detectors integrated with the couplers show that the couplers with passive and active bypass circuits can suppress detection errors of less than ±0.20 and ±0.10 dB, respectively, under 4:1 voltage standing-wave ratio load mismatching conditions, thus proving the effectiveness of the bypass techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    10
    Citations
    NaN
    KQI
    []