Specialization of chromatin-bound nuclear pore complexes promotes yeast aging

2021 
The nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and changes composition in many species as the organism ages. However, how these changes arise and whether they contribute themselves to aging is poorly understood. We show that in replicatively aging yeast cells attachment of DNA circles to NPCs drives the displacement of the NPCs’ nuclear basket and cytoplasmic complexes. Remodeling of the NPC resulted from the regulation of basket components by SAGA, rather than from damages. These changes affected NPC interaction with mRNA export factors, without affecting the residence of import factors or engaging the NPC quality control machinery. Mutations preventing NPC remodeling extended the replicative lifespan of the cells. Thus, our data indicate that DNA circles accumulating in the mother cell drive aging at least in part by triggering NPC specialization. We suggest that antagonistic pleiotropic effects of NPC specialization are key drivers of aging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []