Perfect and controllable nesting in minimally twisted bilayer graphene

2020 
Parallel (“nested”) regions of a Fermi surface (FS) drive instabilities of the electron fluid, for example the spin density wave in elemental chromium. In one-dimensional materials, the FS is trivially fully nested (a single nesting vector connects two “Fermi dots”), while in higher dimensions only a fraction of the FS consists of parallel sheets. We demonstrate that the tiny angle regime of twist bilayer graphene (TBLG) possess a phase, accessible by interlayer bias, in which the FS consists entirely of nestable “Fermi lines”: the first example of a completely nested FS in a 2d material. This nested phase is found both in the ideal as well as relaxed structure of the twist bilayer. We demonstrate excellent agreement with recent STM images of topological states in this material and elucidate the connection between these and the underlying Fermiology. We show that the geometry of the “Fermi lines” network is controllable by the strength of the applied interlayer bias, and thus that TBLG offers unprecedented a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    27
    Citations
    NaN
    KQI
    []