Generation of net electric power with a tokamak reactor under foreseeable physical and engineering conditions

2004 
This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with βN = 1.8, HH = 1.0, and fnGW = 0.85 had sufficient potential to achieve the electric break-even condition (net electric power ) under the following engineering conditions: machine major radius 6.5 m ≤ Rp ≤ 8.5 m, the maximum magnetic field on TF coils Btmax = 16 T, thermal efficiency ηe = 30%, and NBI system efficiency ηNBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are βN and fnGW. βN ≥ 3.0 is required for with fusion power Pf ~ 3000 MW. On the other hand, fnGW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of Tave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs Pf (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius Rp ~ 7.5 m seems preferable for demonstrating net electric power generation when one aims at early realization of fusion energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    13
    Citations
    NaN
    KQI
    []