ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure.

2008 
Recently, it has been demonstrated that fructose-2,6-bisphosphate (F2,6BP) protects skeletal muscle 6-phosphofructo-1-kinase (PFK) from thermal inactivation (50 °C) and against the deleterious effects of guanidinium hydrochloride (GdmCl). On the other hand, ATP, when added at its inhibitory concentrations, that is, >1 mM, enhanced either the thermal- or GdmCl-induced inactivation of PFK. Moreover, we concluded that these phenomena were probably due to the stabilization of PFK tetrameric structure by F2,6BP, and the dissociation of this structure into dimers induced by ATP. Aimed at elucidating the effects of F2,6BP and ATP on PFK at the structural and functional levels, the present work correlates the effects of these metabolites on the equilibrium between PFK dimers and tetramers to the regulation promoted on the enzyme catalytic activity. We show that ATP present a dual effect on PFK structure, favoring the formation of tetramer at stimulatory concentrations (up to 1 mM), and dissociating tetramers into dimers at inhibitory concentrations (>1 mM). Furthermore, F2,6BP counteracted this later ATP effect at either the structural or catalytic levels. Additionally, the effects of both F2,6BP or ATP on the equilibrium between PFK tetramers and dimers and on the enzyme activity presented a striking parallelism. Therefore, we concluded that modulation of PFK activity by ATP and F2,6BP is due to the effects of these ligands on PFK quaternary structure, altering the oligomeric equilibrium between PFK tetramers and dimers. © 2008 IUBMB IUBMB Life, 60(8): 526–533, 2008
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    32
    Citations
    NaN
    KQI
    []