Potential roles of hepatic heat shock protein 25 and 70i in protection of mice against acetaminophen-induced liver injury.

2004 
The aim of the present study was to assess the contribution of the level of expression of heat shock protein 25 (HSP25), 60 (HSP60), 70 (HSC70) and 70i (HSP70i) in mouse livers after a lethal dose of acetaminophen (APAP) to their survival. We examined changes in survival ratio, plasma APAP level and alanine aminotransferase (ALT) activity, and hepatic reduced glutathione (GSH), HSP25, HSP60, HSC70 and HSP70i levels following treatment of mice with APAP (500 mg/kg, p.o.). The plasma APAP level increased rapidly, and reached a maximum 0.5 h after APAP treatment. Hepatic GSH decreased rapidly, and was almost completely depleted 1 h after APAP treatment. Plasma ALT activity, an index of liver injury, significantly increased from 3 h onwards after APAP treatment. The survival ratios 9 h, 24 h and 48 h after APAP treatment were 96%, 38% and 36%, respectively. We found a remarkable difference in the patterns of hepatic HSP25 and HSP70i induction in mice that survived after APAP treatment. HSP70i levels increased from 1 h onwards after APAP treatment in a time-dependent manner, and reached a maximum at 9 h. In contrast, HSP25 could be detected just 24 h after APAP treatment, and maximal accumulation was observed at 48 h. Other HSPs examined were unchanged. Notably, the survival ratio dropped by only 2% after HSP25 expression. Recently, a novel role for HSP25 as an anti-inflammatory factor was suggested. We have already shown that 48-h treatment with APAP induces severe centrilobular necrosis with inflammatory cell infiltration in mouse livers. Taken together, the level of expression of hepatic HSP25 may be a crucial determinant of the fate of mice exposed to APAP insult.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    28
    Citations
    NaN
    KQI
    []