Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis.

2021 
In heterogeneous catalysis research, the reactivity of the individual nanofacets of single particle is typically not resolved. We applied in situ field electron microscopy (FEM) to the apex of a curved rhodium crystal (radius of 650 nanometers), providing high spatial (~2 nanometers) and time resolution (~2 ms) of oscillatory catalytic hydrogen oxidation, imaging adsorbed species and reaction fronts on the individual facets. Using ionized water as imaging species, the active sites were directly imaged by field ion microscopy (FIM). The catalytic behavior of differently structured nanofacets and the extent of coupling between them were monitored individually. We observed limited interfacet coupling, entrainment, frequency-locking, and reconstruction-induced collapse of spatial coupling. The experimental results are backed-up by microkinetic modelling of time-dependent oxygen species coverages and oscillation frequencies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    5
    Citations
    NaN
    KQI
    []