Violating the Thermodynamic Uncertainty Relation in the Three-Level Maser

2021 
Nanoscale heat engines are subject to large fluctuations which affect their precision. The Thermodynamic Uncertainty Relation (TUR) provides a trade-off between output power, fluctuations and entropic cost. This trade-off may be overcome by systems exhibiting quantum coherence. This letter provides a study of the TUR in a prototypical quantum heat engine, the Scovil & Schulz-DuBois maser. Comparison with a classical reference system allows us to determine the effect of quantum coherence on the performance of the heat engine. We identify analytically regions where coherence suppresses fluctuations, implying a quantum advantage, as well as regions where fluctuations are enhanced by coherence. This quantum effect cannot be anticipated from the off-diagonal elements of the density matrix. Because the fluctuations are not encoded in the steady state alone, TUR violations are a consequence of coherence that goes beyond steady-state coherence. While the system violates the conventional TUR, it adheres a recent formulation of a quantum TUR. We further show that parameters where the engine operates close to the conventional limit are prevalent and TUR violations in the quantum model not uncommon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    8
    Citations
    NaN
    KQI
    []