Drought can offset potential water use efficiency of forest ecosystems from rising atmospheric CO2

2020 
Abstract Increasing atmospheric CO2 is both leading to climate change and providing a potential fertilisation effect on plant growth. However, southern Australia has also experienced a significant decline in rainfall over the last 30 years, resulting in increased vegetative water stress. To better understand the dynamics and responses of Australian forest ecosystems to drought and elevated CO2, the magnitude and trend in water use efficiency (WUE) of forests, and their response to drought and elevated CO2 from 1982 to 2014 were analysed, using the best available model estimates constrained by observed fluxes from simulations with fixed and time-varying CO2. The ratio of gross primary productivity (GPP) to evapotranspiration (ET) (WUEe) was used to identify the ecosystem scale WUE, while the ratio of GPP to transpiration (Tr) (WUEc) was used as a measure of canopy scale WUE. WUE increased significantly in northern Australia (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    3
    Citations
    NaN
    KQI
    []