Cellular organization of visual information processing channels in the mouse visual cortex

2020 
Visual processing and behavior depend on specialized neural representations and information channels that encode distinct visual information and enable distinct computations. Our understanding of the neural substrate, however, remain severely limited by sparse recordings and the restricted range of visual areas and visual stimuli considered. We characterized in the mouse the multidimensional spatiotemporal tuning properties of > 30,000 layer 2/3 pyramidal neurons across seven areas of the cortex. The dataset reveals population specialized for processing of oriented and non-oriented contrast, spatiotemporal frequency, and motion speed. Areal analysis reveals profound functional diversity and specificity as well as highly specific representations of visual processing channels in distinct visual areas. Clustering analysis shows a branching of visual representations along the posterior to anterior axis, and between lateral and dorsal areas. Overall, this dataset provides a cellular-resolution atlas for understanding organizing principles underlying sensory representations across the cortex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    4
    Citations
    NaN
    KQI
    []