Identification of a Toxin–Antitoxin System That Contributes to Persister Formation by Reducing NAD in Pseudomonas aeruginosa

2021 
Bacterial persisters are slow-growing or dormant cells that are highly tolerant to bactericidal antibiotics and contribute to recalcitrant and chronic infections. Toxin/antitoxin (TA) systems play important roles in controlling persister formation. Here, we examined the roles of seven predicted type II TA systems in the persister formation of a Pseudomonas aeruginosa wild-type strain PA14. Overexpression of a toxin gene PA14_51010 or deletion of the cognate antitoxin gene PA14_51020 increased the bacterial tolerance to antibiotics. Co-overexpression of PA14_51010 and PA14_51020 or simultaneous deletion of the two genes resulted in a wild-type level survival rate following antibiotic treatment. The two genes were located in the same operon that was repressed by PA14_51020. We further demonstrated the interaction between PA14_51010 and PA14_51020. Sequence analysis revealed that PA14_51010 contained a conserved RES domain. Overexpression of PA14_51010 reduced the intracellular level of nicotinamide adenine dinucleotide (NAD+). Mutation of the RES domain abolished the abilities of PA14_51010 in reducing NAD+ level and promoting persister formation. In addition, overproduction of NAD+ by mutation in an nrtR gene counteracted the effect of PA14_51010 overexpression in promoting persister formation. In combination, our results reveal a novel TA system that contributes to persister formation through reducing the intracellular NAD+ level in P. aeruginosa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    1
    Citations
    NaN
    KQI
    []