N-Alkyl Interstitial Spacers and Terminal Pendants Influence the Alkaline Stability of Tetraalkylammonium Cations for Anion Exchange Membrane Fuel Cells

2016 
Current performance targets for anion exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 h at temperatures of up to 120 °C. Using this target temperature of 120 °C, we provide an incisive 1H nuclear magnetic resonance-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogues. The operative alkaline degradation mechanisms and rates on benzyltrimethylammonium-, n-alkyl interstitial spacer-, and n-alkyl terminal chain-cations are compared in several architectures. Our findings indicate that benzyltrimethylammonium and n-alkyl terminal pendant cations are significantly more labile than an n-alkyl interstitial spacer cation. Additionally, we found that the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when it is combined with an n-alkyl terminal pendant. At 120 °C, an inverse trend was observed in the overall stability of AEM poly(styrene...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    85
    Citations
    NaN
    KQI
    []