Reliability-Based Performance Evaluation of Nonlinear Dynamic Systems Excited in Time Domain

2021 
A novel concept of reliability-based performance evaluation using multiple deterministic analyses of nonlinear dynamic systems excited in time domain is presented. The dynamic excitations can be natural events like earthquakes or wave loadings. It can be thermo-mechanical loading caused by the use of computers. Unpredictability of the dynamic loadings, modeling the structural systems under uncertainty, and predicting the response behavior considering dynamic amplification and the different energy dissipation mechanisms can be very challenging. A transformational theoretical concept is presented to address this knowledge gap. The research objectives are achieved by using several advanced mathematical concepts including sensitivity analysis, model reduction techniques, intelligent sampling schemes, several advanced factorial schemes producing a compounding beneficial effect, and surrogate meta-modeling techniques to obtain efficiency without sacrificing accuracy. They are implemented in a multi-scale environment exploiting state-of-the-art computational power. The formulation extracts stochastic dynamical behavior using only hundreds of intelligent analyses instead of thousands of simulation-based analyses. This is a new design paradigm using intelligent multiple deterministic analyses. It will provide an alternative to simulation and the classical random vibration concept.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []