Stacking effect on electronic, photocatalytic and optical properties: A comparison between bilayer and monolayer SnS

2019 
Abstract In this work, the stacking-dependent optoelectronic performances of a bilayer SnS were explored based on density functional theory (DFT). The results demonstrated that an AB-stacking induces an indirect-to-direct transition, a feature that is capable of vanquishing electron transition impediment from an intrinsic indirect monolayer SnS. An anisotropic and small carrier effective mass exists in all the stacking models, among which the AB-stacking with the lowest value favors high carrier mobility. Calculated band alignments are indicative of acceptable and adjustable photocatalytic activity for all the stacking models, unlike the monolayer SnS. The AB-stacking configuration possesses the strongest redox power, which facilitates it to be a potential candidate for photocatalytic water splitting. Additionally, the AB-stacking does effectively improve optoelectronic properties. The study demonstrated that layer-stacking is an availably adjustable method in the fields of sunlight-driven photocatalysis for nano-optoelectronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    16
    Citations
    NaN
    KQI
    []