Global Hypothesis Generation for 6D Object Pose Estimation

2017 
This paper addresses the task of estimating the 6D-pose of a known 3D object from a single RGB-D image. Most modern approaches solve this task in three steps: i) compute local features, ii) generate a pool of pose-hypotheses, iii) select and refine a pose from the pool. This work focuses on the second step. While all existing approaches generate the hypotheses pool via local reasoning, e.g. RANSAC or Hough-Voting, we are the first to show that global reasoning is beneficial at this stage. In particular, we formulate a novel fully-connected Conditional Random Field (CRF) that outputs a very small number of pose-hypotheses. Despite the potential functions of the CRF being non-Gaussian, we give a new, efficient two-step optimization procedure, with some guarantees for optimality. We utilize our global hypotheses generation procedure to produce results that exceed state-of-the-art for the challenging Occluded Object Dataset.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    105
    Citations
    NaN
    KQI
    []