Identification of the genes involved in heterotrimeric G-protein signaling in mulberry and their regulation by abiotic stresses and signal molecules

2018 
Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play important roles in signal transduction and regulate responses to various stresses. Although G-protein signaling pathways have been extensively identified and characterized in model plants, there is little knowledge in non-model and especially in woody plants. Mulberry is an economically and ecologically important perennial tree, which is adaptable to many environmental stresses. In this study, we identified and cloned six G-protein genes including one Gα, one Gβ, two Gγ, one RGS (regulator of G-protein signaling protein) and one RACK1 (receptor for activated C kinase 1) involved in G-protein signaling. Sequence and phylogenetic analysis revealed that Morus G-proteins are evolutionarily conserved compared with those of other plants. A real-time quantitative reverse transcription polymerase chain reaction analysis showed that Morus G-protein signaling genes were ubiquitously but differentially expressed in various tissues. The expression of all of these genes was affected by abiotic stresses and signal molecules, which indicated that Morus G-protein signaling may be involved in environmental stress and defense responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    6
    Citations
    NaN
    KQI
    []