Traitement de l'interaction spin-orbite en chimie quantique et application à la réactivité des complexes d'actinides

2005 
Improvements on current one-component extraction procedures of spin-orbit pseudopotentials are investigated for high accuracy computation of spin-orbit coupling energies. By means of the perturbation-theory formalism we first show that spin-orbit pseudopotentials, extracted at the one-component self-consistent-field level from a reference all-electron Dirac-Coulomb or Dirac-Coulomb-Breit calculation, include valence spin-orbit polarization and relaxation effects. As a consequence the use of these pseudopotentials in uncontracted spin-orbit configuration interaction (CI) with singles from the reference ground-state configuration gives rise to double counting of these spin-orbit effects. Two new methods that avoid such double counting have been investigated. The first, so-called “explicit” method, calculates explicitly, by means of a four-component spin-orbit CI, the double-counted spin-orbit effects and removes them from the pseudopotentials. Due to the nonadditivity of the core and valence spin-orbit effects as well as the so-called “pseudovariational collapse,” this method is shown to be cumbersome. In the second “implicit” method the spin-orbit pseudopotential is extracted at the spin-orbit polarized and relaxed level by means of a single-excitation spin-orbit CI calculation. Atomic tests on iodine demonstrate the ability of the latter method to solve the double-counting problem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []