Research on Analysis and Classification of Vulnerability of Electromagnetic Pulse with a STM32 Single-Chip Microcomputer

2021 
With the continuous development of information technology, the performance of the entire traditional electrical system is gradually optimized. Nowadays, the single-chip technology is an important part of the traditional electrical system because it determines the operating quality of the entire traditional system. However, due to the electromagnetic pulse, the single-chip microcomputer system may be interfered with malfunction or damage, which seriously affects its performance. Therefore, to investigate the impact of an electromagnetic pulse on a single-chip microcomputer system, in this research work, we have used a STM32 single-chip microcomputer as the research object by setting up multiple sets of STM32 single-chip microcomputer serial communication systems. Besides, we have conducted an electromagnetic pulse vulnerability experiment using the inductive coupling inject method which has improved the antielectromagnetic pulse capacity of the STM32 single-chip serial communication system. The experimental results show that the damage threshold of the single-chip microcomputer with positive pulse injection is greater than the negative pulse injection, which indicates that the serial communication system of the STM32 single-chip microcomputer is more sensitive to the negative pulse injection. Moreover, this research work is of great significance to evaluate more accurately the viability and anti-interference capability of a single-chip microcomputer system under the action of electromagnetic pulse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []