Astrocyte elevated gene-1 and c-Myc cooperate to promote hepatocarcinogenesis in mice

2015 
Astrocyte elevated gene-1 (AEG-1) and c-Myc are overexpressed in human hepatocellular carcinoma (HCC) functioning as oncogenes. AEG-1 is transcriptionally regulated by c-Myc and AEG-1 itself induces c-Myc by activating Wnt/β-catenin signaling pathway. We now document cooperation of AEG-1 and c-Myc in promoting hepatocarcinogenesis by analyzing hepatocyte-specific transgenic mice expressing either AEG-1 (Alb/AEG-1), c-Myc (Alb/c-Myc) or both (Alb/AEG-1/c-Myc). WT and Alb/AEG-1 mice did not develop spontaneous HCC. Alb/c-Myc mice developed spontaneous HCC without distant metastasis while Alb/AEG-1/c-Myc mice developed highly aggressive HCC with frank metastasis to the lungs. Induction of carcinogenesis by N-nitrosodiethylamine (DEN) significantly accelerated the kinetics of tumor formation in all groups. However, in Alb/AEG-1/c-Myc the effect was markedly pronounced with lung metastasis. In vitro analysis showed that Alb/AEG-1/c-Myc hepatocytes acquired increased proliferation and transformative potential with sustained activation of pro-survival and epithelialmesenchymal transition (EMT) signaling pathways. RNA-sequencing analysis identified a unique gene signature in livers of Alb/AEG-1/c-Myc mice that was not observed when either AEG-1 or c-Myc was overexpressed. Specifically Alb/AEG-1/c-Myc mice overexpressed maternally imprinted non-coding RNAs, such as Rian, Meg-3 and Migr, which are implicated in hepatocarcinogenesis. Knocking down these ncRNAs significantly inhibited proliferation and invasion by Alb/AEG-1/c-Myc hepatocytes. Conclusion Our studies reveal a novel cooperative oncogenic effect of AEG-1 and c-Myc that might explain the mechanism of aggressive HCC. Alb/AEG-1/c-Myc mice provide a useful model to understand the molecular mechanism of cooperation between these two oncogenes and other molecules involved in hepatocarcinogenesis. This model might also be of use for evaluating novel therapeutic strategies targeting HCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    34
    Citations
    NaN
    KQI
    []