Asymptotical Theory of Runaway Electron Diffusion Due to Magnetic Turbulence in Tokamak Plasmas

2010 
Asymptotic theory of transport of runaway electrons in a toroidal plasma in the presence of small-scale magnetic turbulence is proposed. It is based on relativistic Hamiltonian guiding center equations for runaway electrons in toroidal plasmas. Using the asymptotical analysis the explicit relation between the spectral (m, n)- components of perturbation Hamiltonian and the corresponding spectrum of the magnetic turbulence is found. This relation depends only on a few parameters of runaway orbits and magnetic surfaces. The radial profiles of runaway diffusion coefficients are found employing two methods, the quasilinear approximation and the direct calculations using a fast running mapping. The dependence of the shielding factor of the runaway electron parameters and the turbulence spectra is discussed (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    11
    Citations
    NaN
    KQI
    []