Spectroscopic Characterization of Adsorbed 13CO2 on 3-Aminopropylsilyl-Modified SBA15 Mesoporous Silica

2017 
Multiple chemisorption products are found from the interaction of CO2 with the solid-amine sorbent, 3-aminopropyl silane (APS), bound to mesoporous silica (SBA15) using solid-state NMR and FTIR spectroscopy. We employed a combination of both 15N{13C} rotational-echo double-resonance (REDOR) NMR and 13C{15N} REDOR to determine the chemical identity of these products. 15N{13C} REDOR measurements are consistent with a single 13C–15N pair and distance of 1.45 A. In contrast, both 13C{15N} REDOR and 13C CPMAS are consistent with multiple 13C products. 13C CPMAS shows two neighboring resonances, whose chemical shifts are consistent with carbamate (at 165 ppm) and carbamic acid. The 13C{15N} REDOR experiments resonant at 165 ppm show an incomplete buildup of the REDOR data to ∼90% of the expected maximum. We conclude this 10% missing intensity corresponds to a 13C NMR species that resonates at the identical chemical shift but that is not in dipolar contact with 15N. These data are consistent with the presence of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    25
    Citations
    NaN
    KQI
    []