8.2 OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN TUNGSTEN

2015 
We used our recently developed lattice-based object kinetic Monte Carlo code; KSOME [1] to carryout simulations of radiation damage in bulk tungsten at temperatures of 300, and 2050 K for various dose rates. Displacement cascades generated from molecular dynamics (MD) simulations for PKA energies at 60, 75 and 100 keV provided residual point defect distributions. It was found that the number density of vacancies in the simulation box does not change with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that bigger clusters are formed at larger dose rates. At 300 K, although the average vacancy cluster size increases slightly, the vast majority of vacancies exist as mono-vacancies. At 2050 K no accumulation of defects was observed during irradiation over a wide range of dose rates for all PKA energies studied in this work.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []