TGCN: Tag Graph Convolutional Network for Tag-Aware Recommendation

2020 
Tag-aware recommender systems (TRS) utilize rich tagging records to better depict user portraits and item features. Recently, many efforts have been done to improve TRS with neural networks. However, these solutions rustically rely on the tag-based features for recommendation, which is insufficient to ease the sparsity, ambiguity and redundancy issues introduced by tags, thus hindering the recommendation performance. In this paper, we propose a novel tag-aware recommendation model named Tag Graph Convolutional Network (TGCN), which leverages the contextual semantics of multi-hop neighbors in the user-tag-item graph to alleviate the above issues. Specifically, TGCN first employs type-aware neighbor sampling and aggregation operation to learn the type-specific neighborhood representations. Then we leverage attention mechanism to discriminate the importance of different node types and creatively employ Convolutional Neural Network (CNN) as type-level aggregator to perform vertical and horizontal convolutions for modeling multi-granular feature interactions. Besides, a TransTag regularization function is proposed to accurately identify user's substantive preference. Extensive experiments on three public datasets and a real industrial dataset show that TGCN significantly outperforms state-of-the-art baselines for tag-aware top-N recommendation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []