Indium segregation in Gd5(Si, Ge)4 magnetocaloric materials

2022 
Abstract Chemical substitution is one of the most efficient tools to tune and optimize magnetic and magnetocaloric properties of the giant magnetocaloric materials. In particular, Indium substitutions could be useful both for tuning properties of these interesting intermetallic materials and to unveil their local-scale behavior across the magnetostructural transition via hyperfine techniques. Hence, in order to investigate the effect of Indium additions on the crystal structure, micro-structure, magnetic and magnetocaloric properties, a series of In-containing samples derived from the base Gd5Si1.2Ge2.8 stoichiometry were prepared. The major findings are that while In is insoluble in the 5: 4 phase, it will instead promote the emergence of the impurity 5: 3 phase and segregates into this phase. Hence, In leads to major crystallographic changes, which enhance atomic disorder and disrupt the Si to Ge ratio in the 5: 4 phase. Subsequently, a higher 5: 4 unit cell volume and a lower magnetic ordering temperature are found in the In-substituted samples. Finally, the magnetocaloric properties of the In-substituted samples reveal a detrimental effect on the maximum magnetic entropy change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []