Secure Distributed Mobile Volunteer Computing with Android

2022 
Volunteer Computing provision of seamless connectivity that enables convenient and rapid deployment of greener and cheaper computing infrastructure is extremely promising to complement next-generation distributed computing systems. Undoubtedly, without tactile Internet and secure VC ecosystems, harnessing its full potentials and making it an alternative viable and reliable computing infrastructure is next to impossible. Android-enabled smart devices, applications, and services are inevitable for Volunteer computing. Contrarily, the progressive developments of sophisticated Android malware may reduce its exponential growth. Besides, Android malwares are considered the most potential and persistent cyber threat to mobile VC systems. To secure Android-based mobile volunteer computing, the authors proposed MulDroid, an efficient and self-learning autonomous hybrid (Long-Short-Term Memory, Convolutional Neural Network, Deep Neural Network) multi-vector Android malware threat detection framework. The proposed mechanism is highly scalable with well-coordinated infrastructure and self-optimizing capabilities to proficiently tackle fast-growing dynamic variants of sophisticated malware threats and attacks with 99.01% detection accuracy. For a comprehensive evaluation, the authors employed current state-of-the-art malware datasets (Android Malware Dataset, Androzoo) with standard performance evaluation metrics. Moreover, MulDroid is compared with our constructed contemporary hybrid DL-driven architectures and benchmark algorithms. Our proposed mechanism outperforms in terms of detection accuracy with a trivial tradeoff speed efficiency. Additionally, a 10-fold cross-validation is performed to explicitly show unbiased results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []